The generator matrix 1 0 1 1 1 3X+2 1 1 0 1 1 3X+2 1 2X+2 1 1 1 X 1 1 1 1 3X+2 X+2 2X+2 1 1 3X+2 2X X X 1 1 2 1 2X+2 X 1 1 0 1 X+1 3X+2 3 1 3X+1 0 1 2X+1 3X+2 1 2X+2 1 X+1 X+2 2X+3 1 2 2X+1 0 3 1 1 1 3X+2 X+1 1 1 3X 1 1 2X+3 1 2X+3 1 2X X+2 2 0 0 2 0 0 2X 0 2 2X+2 2X+2 2 2X+2 2X+2 2X 2X+2 0 0 2X 2 2X 2X 2X+2 2 2X+2 2X+2 2X+2 2X 0 2 2X+2 2 2 2X+2 2X+2 2X+2 2X+2 2X+2 0 2 0 0 0 2X+2 2X 2 2 2X+2 2X+2 2 2X 2X 2X+2 0 2 0 2 2X+2 2X 2X 2X+2 0 2X 2 2X+2 2 0 2X 2X 2X+2 2 0 2X+2 0 2X 2 0 2X 0 generates a code of length 39 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 35. Homogenous weight enumerator: w(x)=1x^0+156x^35+351x^36+614x^37+539x^38+832x^39+600x^40+536x^41+259x^42+126x^43+32x^44+30x^45+1x^46+4x^47+7x^48+4x^49+1x^50+2x^51+1x^52 The gray image is a code over GF(2) with n=312, k=12 and d=140. This code was found by Heurico 1.16 in 19 seconds.